organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nicholas Gathergood,^a* Peter J. Scammells^a and Gary D. Fallon^b

^aDepartment of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, Parkville, VIC 3052, Australia, and ^bSchool of Chemistry, PO Box 23, Monash University, Victoria 3800, Australia

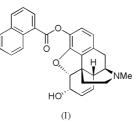
Correspondence e-mail: nicholas.gathergood@vcp.monash.edu.au

Key indicators

Single-crystal X-ray study T = 123 K Mean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.082 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7,8-Didehydro-4,5-epoxy-17-methylmorphinan-6-yl naphthalene-1-carboxylate


Received 24 October 2003 Accepted 31 October 2003

Online 8 November 2003

The crystal structure of morphine 3-(1-naphthoate), (or 7,8didehydro-4,5-epoxy-17-methylmorphinan-6-yl naphthalene-1-carboxylate), $C_{28}H_{25}NO_4$, was determined at 123 K. An intramolecular hydrogen bond exists between the secondary alcohol and the naphthoate group. Within the crystal structure, there is no significant π - π stacking, but there are significant intermolecular $C-H\cdots\pi$ interactions.

Comment

As part of our work investigating protecting group methodology of opiate compounds and their properties, we have studied the use of the 1-naphthoate group. We have recently reported the preparation, properties and crystal structure of morphine di-(1-naphthoate) (Gathergood *et al.*, 2003). We describe herein the crystal structure of morphine 3-(1naphthoate), (I), and unambiguously assign the position of the naphthoate group.

There are several examples of morphine-based opiates reacting at the phenol position with acid chlorides to give the mono-ester product (Mignat *et al.*, 1996; Otter *et al.*, 2001; Preechagoon *et al.*, 1998; Sy *et al.*, 1986). Despite the steric bulk of the 1-naphthoyl group, we expected reaction at the phenol (see above); however, we were keen to unambiguously assign the product by X-ray crystallography. The results (Fig. 1) show definitively that the phenolic alcohol reacted to give the title compound, morphine 3-(1-naphthoate).

Present in (I) is an intramolecular hydrogen bond between the secondary alcohol group and the carbonyl O atom of the naphthoate group. There are also extensive intermolecular $C-H\cdots\pi$ interactions (Table 2). Hydrogen bonding to the N atom of the opiate backbone is not observed.

Experimental

Morphine 3-(1-naphthoate), (I), was prepared from (-)-morphine by addition of 1-naphthoyl chloride in pyridine and stirring at room temperature for 48 h. Pyridine was removed by rotary evaporation and the residue dissolved in dichloromethane and washed with 5% sodium bicarbonate solution, then brine. The organic phase was dried over magnesium sulfate, filtered and the solvents removed by rotary evaporation. The crude product was purified by column chromatography. Needle-like crystals of morphine 3-(1-naphthoate) were grown by slow evaporation of a methanol solution.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $\begin{array}{l} C_{28}H_{25}NO_4\\ M_r = 439.49\\ Monoclinic, P2_1\\ a = 12.7421 (2) \text{ Å}\\ b = 7.1908 (1) \text{ Å}\\ c = 12.9536 (3) \text{ Å}\\ \beta = 111.900 (1)^\circ\\ V = 1101.23 (4) \text{ Å}^3\\ Z = 2 \end{array}$

Data collection

Nonius KappaCCD diffractometer Thick-slice φ and ω scans 14 873 measured reflections 2909 independent reflections 2423 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.1452P]
$wR(F^2) = 0.082$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
2909 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
300 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.325 \text{ Mg m}^{-3}$

Cell parameters from 14 873

Mo $K\alpha$ radiation

reflections

T = 123 (2) K

 $R_{\rm int}=0.044$

 $\theta_{\rm max} = 28.3^{\circ}$

 $h = -16 \rightarrow 16$

 $\begin{array}{l} k = -9 \rightarrow 9 \\ l = -17 \rightarrow 17 \end{array}$

Acicular, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

 $\theta = 2.8 - 28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Table 1

Selected geometric parameters (Å, °).

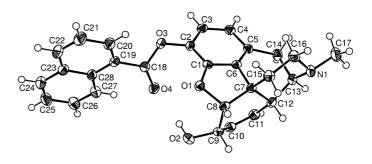

C1-01	1.372 (2)	C9-O2	1.426 (2)	
C1-C2	1.376 (3)	C9-C10	1.501 (3)	
C2-O3	1.406 (2)	C10-C11	1.324 (3)	
C7-C12	1.540 (3)	C11-C12	1.504 (3)	
C7-C8	1.546 (3)	C18-O4	1.208 (2)	
C8-O1	1.480 (2)	C18-O3	1.367 (2)	
C8-C9	1.545 (3)	C18-C19	1.491 (3)	
O1-C1-C2	127.39 (16)	C10-C11-C12	120.73 (19)	
C1-C2-O3	122.05 (16)	C11-C12-C7	108.97 (17)	
C12-C7-C8	116.34 (15)	O4-C18-O3	123.25 (16)	
01-C8-C9	108.95 (16)	O4-C18-C19	126.59 (17)	
O1-C8-C7	105.49 (13)	O3-C18-C19	110.15 (15)	
C9-C8-C7	113.94 (15)	C20-C19-C18	117.65 (19)	
O2-C9-C10	113.09 (17)	C28-C19-C18	121.31 (17)	
02-C9-C8	111.10 (15)	C1-O1-C8	106.24 (13)	
C10-C9-C8	113.60 (15)	C18-O3-C2	117.36 (14)	
C11-C10-C9	121.94 (19)		· · · ·	

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O4	0.84	2.23	3.067 (2)	171
$C3-H3\cdots Cg1^{i}$	0.95	2.70	3.577 (2)	154
$C16-H16b\cdots Cg1^{ii}$	0.99	3.14	4.004 (2)	146
$C14-H14a\cdots Cg2^{iii}$	0.99	3.24	4.068 (2)	143
$C25-H25\cdots Cg3^{iv}$	0.95	2.84	3.643 (3)	143

Symmetry codes: (i) $-x, \frac{1}{2} + y, -z$; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z$; (iv) $1 - x, \frac{1}{2} + y, 1 - z$. Cg1-3 are the centroids of rings C1-C6, C19-C23/C28 and C23-C28, respectively.

Figure 1 *ORTEP-3* (Farrugia, 1997) view of (I). Displacement ellipsoids are drawn at the 50% probability level.

H atoms were placed in calculated positions, with C–H distances of 0.95, 0.98, 0.99 and 1.00 Å for aromatic, methyl, methylene and methine H atoms, respectively. They were included in the refinement in a riding-model approximation, with $U_{\rm iso} = 1.2U_{\rm eq}$ (1.5 $U_{\rm eq}$ for methyl H atoms) of the carrier atom. In the absence of significant anomalous dispersion effects, Friedel pairs were merged. The absolute configuration was assigned by reference to (–)-morphine.

Data collection: *COLLECT* (Nonius, 1997–2002); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors acknowledge financial support from the Australian Research Council.

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gathergood, N., Scammells, P. J. & Fallon, G. D. (2003). Acta Cryst. C59, 0485–0488.
- Mignat, C., Heber, D., Schlicht, H. & Ziegler, A. (1996). J. Pharm. Sci. 85, 690–694.
- Nonius (1997-2002) COLLECT. Nonius BV, Delft, The Netherlands.
- Otter, K., Mignat, C., Heber, D. & Ziegler, A. (2001). Pharmazie, 56, 471-474.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Preechagoon, D., Brereton, I., Staatz, C. & Prankerd, R. (1998). *Int. J. Pharm.* 163, 177–190.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sy, W. W., By, A. W., Neville, G. A. & Wilson, W. L. (1986). J. Pharm. Sci. 75, 787–789.